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a b s t r a c t

Fuel cells is a rapidly evolving technology with applications in many industries including transportation,
and both portable and stationary power generation. The viability, efficiency and robustness of fuel-cell
systems depend strongly on optimization and control of their operation. This paper presents the devel-
opment of an integrated optimization and control tool for Proton Exchange Membrane Fuel-Cell (PEMFC)
systems. Using a detailed simulation model, a database is generated first, which contains steady-state
values of the manipulated and controlled variables over the full operational range of the fuel-cell sys-
tem. In a second step, the database is utilized for producing Radial Basis Function (RBF) neural network
“meta-models”. In the third step, a Non-Linear Programming Problem (NLP) is formulated, that takes
into account the constraints and limitations of the system and minimizes the consumption of hydro-
ptimization
eta-modeling
eural networks

gen, for a given value of power demand. Based on the formulation and solution of the NLP problem, a
look-up table is developed, containing the optimal values of the system variables for any possible value
of power demand. In the last step, a Model Predictive Control (MPC) methodology is designed, for the
optimal control of the system response to successive sep-point changes of power demand. The efficiency
of the produced MPC system is illustrated through a number of simulations, which show that a successful
dynamic closed-loop behaviour can be achieved, while at the same time the consumption of hydrogen is

minimized.

. Introduction

A fuel-cell system is a device where chemical energy from a
uel, such as hydrogen, is electrochemically converted to electri-
al and thermal energy, without combustion. Fuel cells operate
t low noise levels and do not produce pollutant emissions.
uel cells offer various economic and environmental advantages
ver internal-combustion engines and batteries. Due to those

dvantages, fuel-cell technology has come to the foreground for
any mobile and terrestrial applications. In particular, the Pro-

on Exchange Membrane Fuel-Cell (PEMFC) technology offers many
dvantages over other types of fuel cells (FCs); hence, this device

Abbreviations: 3D, Three-Dimensional; CPU, Central Processor Unit; DC, Direct
urrent; FIR, finite impulse response; FC, fuel cell; LOO, Leave One-Out; LQG,
inear Quadratic Gaussian; LQR, Linear Quadratic Regulator; MIMO, multi-input-
ulti-output; MPC, Model Predictive Control; NLP, Non-Linear Programming;
NM, neural network model; PEMFC, Proton Exchange Membrane Fuel-Cell; PID,
roportional–integral–derivative; PRESS, Prediction Error Sum of Squares; RBF,
adial Basis Function; RMSE, Root Mean Squared Error; SOFC, Solid Oxide Fuel Cell;
SE, Sum of Squared Errors between the observations and the predicted values; SSY,
um of Squared Deviations between the observations and their mean.
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has the potential to become a primary power source for power in
the coming era.

However, the FC technology needs to tackle a variety of signifi-
cant problems, in order to become more competitive and efficient
compared to other energy technologies. In particular, fuel-cell sys-
tems pose many challenging problems as far as control and system
integration are concerned, due to complicated system configura-
tions and interactive subsystems, which lead to intricate transient
dynamics and difficult control tasks.

In the literature, a number of control strategies and method-
ologies for fuel-cell systems have been proposed, that range
from simple proportional–integral–derivative (PID) controllers to
advanced control strategies such as fuzzy controllers and Model
Predictive Control (MPC) methodologies.

Methekar et al. [1] considered a multi-input-multi-output
(MIMO) system with inputs of hydrogen and coolant and outputs
of power density and temperature, and proposed two PID control
strategies. Woo and Benziger [2] demonstrated that the power out-
put from a PEMFC can be directly regulated by limiting the hydrogen
feed to the FC. Regulation was accomplished by varying the internal

resistance of the membrane-electrode assembly in a self-draining
FC with the effluents connected to water reservoirs.

Pukrushpan et al. [3] proposed both a feedforward controller
and a Linear Quadratic Regulator (LQR) state feedback controller, for
the online control of a PEMFC system. Guidong et al. [4] presented

http://www.sciencedirect.com/science/journal/03787753
http://www.elsevier.com/locate/jpowsour
mailto:hsarimv@chemeng.ntua.gr
dx.doi.org/10.1016/j.jpowsour.2009.01.048
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Nomenclature

ch control horizon
C number of past inputs in the FIR model
d correction vector
f Radial Basis Function
g1, g1 function symbols
hi ith coefficient in FIR model
Hi matrix containing the ith coefficients of a MIMO FIR

model
Ist stack current (A)
I∗st optimal value of stack current (A)
k number of independent variables
L number of hidden nodes in the neural network

topology
M number of output variables
n number of the available data
N number of input variables
ph prediction horizon
PD power demand (W)
Pnet fuel-cell stack net power
R weight matrix
R2 coefficient of determination (%)
R2

CV coefficient of determination by using the cross-
validation technique (%)

Ti sampling time (s)
u input vector
�u vector of control moves
Ucm compressor voltage (V)
Ust stack voltage (V)
U∗

cm optimal value of compressor voltage (V)
wj the weight corresponding to the response of the jth

node in the neural network topology
W weight matrix
x input vector in the neural network model
xj the centre of the jth node in the neural network

topology
y output vector
ŷ prediction of output vector
ym,i true value of the mth output variable for the ith

observation
ŷm,i predicted value of the mth output variable for the

ith observation
ȳm mean of all values of the mth output variable over

the available data set
ŷLOO

m,i
mth output variable prediction for observation i of
the model that is trained using all the available data,
except from observation i

ysp set-point vector
zj The response of the jth node in the neural network

topology

Greek symbols
�O oxygen excess ratio

a
b
a
v
d
R
t

variables: the FC current, the compressor motor voltage, the FC net
2
�∗

O2
optimal value of oxygen excess ratio

power management system, by employing a DC–DC module, a
attery, a controller and some other circuits, as well as an LQR
lgorithm, which provided load with an approximately constant

oltage, but also stabilized stack current by regulating charging or
ischarging current of the battery, according to the change of load.
odatz et al. [5] designed a Linear Quadratic Gaussian (LQG) con-
roller to decouple the pressure trace from the mass flow trace. Di
ources 193 (2009) 258–268 259

Domenico et al. [6] extended this idea, by developing a multivari-
able LQG controller that is able to tune the excess air ratio while
tracking the optimal pressurization to maximize system efficiency
for transient loads.

Danzer et al. [7] proposed a multivariable flatness-based control
technique, for controlling cathode pressure and oxygen excess ratio
of a fuel cell, using the mass flow controller and the outlet throttle
as actuators. Zenith and Skogestad [8] presented a method to con-
trol the output of a buck-boost converter connected to a fuel cell,
by switching the converter using a few logical rules. The resulting
control loop was then inserted in a cascade-control framework to
control the armature current in a DC motor, by manipulating its
input voltage.

Wang et al. [9] applied multivariable robust control strate-
gies to a PEMFC system. Initially, they modeled the PEMFC as a
two-input-two-output system, where the inputs are air and hydro-
gen flow rates and the outputs are cell voltage and current. By
fixing the output resistance, they aimed to control the cell volt-
age output by regulating the air and hydrogen flow rates. An H∞
multivariable robust controller was designed to provide robust
performance and reduce the hydrogen consumption of this sys-
tem.

Mo Zhijun et al. [10] applied a fuzzy control technique to a
PEMFC, in order to maintain the output voltage through the gas
pressure control, for any load applied to the PEMFC output ter-
minals. Zhan Yuedong et al. [11] designed a fuzzy-PI controller to
control the hydrogen and air/oxygen mass flows, but also auxiliary
variables such as the temperature, pressure, humidity of the mem-
brane, and proportion of stoichiometry. Sakhare et al. [12] designed
a power condition unit for a Solid Oxide Fuel Cell (SOFC) by incor-
porating a fuzzy logic control strategy, which is also suitable for
any type of fuel cells with slight alterations, whereas Schumacher
et al. [13] proposed a scheme for the online control of multiple
cell units, using the Takagi Sugeno Kang (TSK) type fuzzy logic
approach.

Arce et al. [14] developed an explicit predictive control strat-
egy for a stand-alone PEMFC. Golber and Lewin [15] presented an
alternative model-based controller for the regulation of a PEMFC.
The model accounts for spatial dependencies of voltage, current,
material flows, and temperatures in the fuel-cell channel. Analysis
of the process model showed that the effective gain of the process
undergoes a sign change in the normal operating range of the fuel
cell, indicating that it cannot be stabilized using a linear controller
with integral action and, consequently, they developed a non-linear
model predictive controller. Wang et al. [16] applied a data-driven
predictive control approach in order to solve the control problem
of a SOFC system, since it was previously shown that the control
of SOFC is challenging, due to the slow response and strict oper-
ating constraints. An MPC strategy was developed by Vahidi et al.
[17] for a hybrid PEMFC system with ultracapacitors as an auxiliary
source of power. Jurado [18] developed an MPC method for SOFCs,
by integrating in it fuzzy models. The MPC concept was also used
by Vahidi et al. [19] to avoid fuel-cell oxygen starvation, prevent air
compressor surge and choke, and match at the same time an arbi-
trary level of current demand. The control scheme was designed
on a hybrid configuration, in which a bank of ultracapacitors sup-
plements the polymer electrolyte membrane fuel cell during fast
current transients.

In this paper, a new methodology is presented for the opti-
mal control of a PEMFC system. A simulation model is used first
to generate a database that contains the values of the key system
power and the oxygen excess ratio. An advanced neural network
model (NNM) methodology is then applied to obtain a non-linear
model between the input and the output variables. The database
is also used for validating the accuracy of the produced models.



260 J. Hasikos et al. / Journal of Power Sources 193 (2009) 258–268

F
c

A
l
v
i
c
e
p
v
o
c
c

F

2

2

u
w
t
c
f
s
o
�
t
a
g

Table 1
Structure of the database used for the generation and validation of the meta-models.

No. of data Input variables Output variables

Ist (A) Ucm (V) Pnet (W) �O2

1 60 50 14,580 1.312
2 100 65 21,640 1.176
3 150 90 29,750 1.235
. . . . . . . . . . . . . . .
. . . . . . . . . . . . . . .
. . . 75 60 17,600 1.369
. . . . . . . . . . . . . . .
524 . . . . . . . . . . . .

input-output variables.
The contents of the database are presented graphically in

Figs. 2 and 3. Fig. 2 presents in 3D view the net power as a func-
tion of stack current and compressor voltage, whereas Fig. 3 shows
ig. 1. Flowchart of the proposed PEMFC modeling, optimization and control pro-
edure.

Non-Linear Programming (NLP) optimization problem is formu-
ated next, in order to obtain the optimal values of the decision
ariables. Eventually, a methodology based on the principles of MPC
s designed, for the optimal control of the system response to suc-
essive sep-point changes of power demand. The optimal oxygen
xcess ratio value (determined by the solution of the optimization
roblem as described above) is used as an additional controlled
ariable. The efficiency of the produced MPC system is illustrated
n a number of simulations, which show that a successful dynamic
losed-loop behaviour can be achieved, while at the same time the
onsumption of hydrogen is minimized.

The proposed computational tool is summarized graphically in
ig. 1.

. PEMFC modeling

.1. Dynamic first-principle PEMFC model

The four-step methodology that is presented in this paper is built
pon a detailed first-principle dynamic model of a PEMFC system,
hich has been proposed by Pukrushpan et al. [3]. The model con-

ains both the main part (cell units) and auxiliary parts (compressor,
ooling system, humidification system as well as the supply mani-
olds) of the PEMFC system. The overall inputs to the model are the

tack current, Ist, and the compressor voltage, Ucm, whereas model
utputs are the FC stack net power, Pnet, and the oxygen excess ratio,
O2 , (input oxygen mass rate/oxygen reacted). More details about
he development of the model, the complete set of differential and
lgebraic equations and the values of the model parameters are
iven in the above reference.
Fig. 2. FC stack net power as a function of stack current and compressor voltage.

2.2. Formulation of database

The available first-principle model was used to provide the
steady-state output values corresponding to a number of input
values that cover the full operational range of the system. In par-
ticular, values in the range (20 A–350 A) were assigned to stack
current, whereas compressor voltage was set at values in the range
(20 V–250 V). CPU time for each run was about 1 s on an Intel Core
2.2 GHz processor. The obtained results formed a database, which
consists of 524 input-output examples. Table 1 presents the struc-
ture of the database and includes some indicative values of the
Fig. 3. Oxygen excess ratio as a function of stack current and compressor voltage.
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Fig. 4. Standard RBF neural network topology.

he oxygen excess ratio, as a function of the same input variables. It
hould be noted that in case we have access to experimental data
btained from a true fuel-cell system, these data can be stored in the
atabase, instead of the first-principle model simulation results.

. Development of meta-models

The database that was generated as described in the previous
ection was utilized for developing correlation equations between
he output variables Pnet, and �O2 and the input variables Ist and Ucm

f the system. In particular, the Radial Basis Function (RBF) neural
etwork architecture was adopted for producing the meta-models,
ue to its simple topology and the fast and robust algorithms that
re available in the literature for training this type of networks. The
opology of the RBF network is presented in Fig. 4 and consists of
hree layers: the input layer, the hidden layer and the output layer.

The input vector to the network u contains the input variables,
.e. u = [u1, u2]T = [Ist, Ucm]T , while the neural network output vec-
or provides the estimated values for the net power and oxygen

xcess ratio ŷ = [ŷ1, ŷ2]T =
[
P̂net, �̂O2

]T
, which are calculated as

eighted summations of the hidden node responses:

m =
L∑

j=1

wm,j · zj(x) (1)

here

j(u) = f (||u − xj||22) (2)

In the above equations zj is the response of the jth node, f is
he Radial Basis Function, xj is the centre of the jth node, L is the
otal number of hidden nodes and wm,j is the weight connecting
he response of the jth node to the mth network output.

An RBF training procedure aims at the determination of the
umber of nodes in the hidden layer, the hidden node centres and
he output weights, in order to minimize the deviation between the
redicted and the measured values of the output variables over the
et of the available data base. The training method used in this work
s based on the fuzzy partition of the input space, which is produced
y defining a number of triangular fuzzy sets in the domain of each

nput variable [20]. The centres of these fuzzy sets form a multidi-

ensional grid on the input space. A rigorous selection algorithm
hooses the most appropriate vertices on the grid, which are then
sed as the hidden node centres in the resulting RBF network model.
he idea behind the selection algorithm is to place the centres in
ources 193 (2009) 258–268 261

the multidimensional input space, so that the distance between
any two centre locations is guaranteed to be greater than a lower
limit, which is defined by the length of the edges on the grid. At the
same time, the algorithm ensures that for any input example in the
training set there is at least one selected hidden node that is close
enough, according to an appropriately defined distance criterion.
The so called “fuzzy-means” training method does not need the
number of centres to be fixed before the execution of the method.
Due to the fact that it is a one-pass algorithm, it is extremely fast,
even in the case of a large database of input-output training data.
One additional advantage is that the training algorithm used needs
only one tuning parameter, namely the number of fuzzy sets that
are utilized to partition each input dimension.

3.1. Correlation equations

The training procedure was used several times by altering each
time the fuzzy partition of the input space (number of fuzzy sets
defined in each input dimension), which is in fact the only design
parameter that must be defined by the user, when utilizing the
fuzzy-means algorithm. The average time needed to train an RBF
network using an Intel Core 2.2 GHz processor was 18 s. The results
were gradually improved up to the point where 16 fuzzy sets were
used to partition the domain of each input variable, which cor-
responds to 57 hidden nodes. A further increase results to the
overtraining phenomenon, where the performance of the produced
model is not improved, although the model increases in size. The
following statistics were used to measure the accuracy of the pro-
duced models:

Root Mean Squared Error

RMSEm =
√

SSEm

n − k − 1
=

√∑n
i=1(ym,i − ŷm,i)

2

n − k − 1
(3)

Coefficient of Determination

R2
m = 1 − SSEm

SSYm
= 1 −

∑n
i=1(ym,i − ŷm,i)

2∑n
i=1(ym,i − ȳm)2

(4)

F-statisticm = (R2
m/k)

((1 − R2
m)/(n − k − 1))

(5)

where SSEm measures the Sum of Squared Errors between the obser-
vations and the predicted values over the set of the available data for
the mth output variable, while SSYm measures the respective sum-
mation of squared deviations between the observations and their
mean. In the above equations ym,i is the true value of the mth output
variable for the ith observation, ŷm,i is the associated model predic-
tion, and ȳm is the mean of all values of the mth output variable in
the available data set. Finally, k is the number of the independent
variables, and n the number of the available input-output data.

In order to test the reliability of the modeling methodology,
the cross-validation method was used. Following this technique,
a number of modified data sets is created by deleting in each case
one or a small group (i.e. leave some out) of objects. For each data
set, an input-output model is developed, by applying the model-
ing technique. Each model is evaluated, by measuring its accuracy
in predicting the responses of the remaining data (the ones that
have not been utilized in the development of the model). In par-

ticular, the Leave One-Out (LOO) cross-validation procedure was
used in this study, which produces a number of models, by deleting
each time one object from the training set. Obviously, the number
of models produced by the LOO procedure is equal to the number
of available examples n. Prediction Error Sum of Squares (PRESS) is
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Table 2
Statistical indices corresponding to the produced RBF neural network model for both
output variables.

Statistical indices relating to RBF neural
network model with 57 hidden nodes

Pnet �O2

RMSE 52.9235 0.0426
R2 0.9999 0.9997
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Fig. 6. Database oxygen excess ratio values against neural network predictions using
the cross-validation procedure.

Table 3
Min, max, mean and standard deviation corresponding to RMSE and R2 values
obtained after performing 100 random partitions of the available data into training
and validations sets.

Statistical indices Min Max Mean Standard deviation
-Statistic 2,604,739.5 867,812.4
2
CV

0.9998 0.9996
PRESS 98.2385 0.0513

standard index to measure the accuracy of a modeling method
sing the cross-validation technique. Based on the PRESS and SSY
tatistics, the R2

CV and SPRESS values can be easily calculated for each
utput variable. The formulae used to calculate all the aforemen-
ioned statistics are presented below:

2
CV,m = 1 − PRESSm

SSYm
= 1 −

∑n
i=1(ym,i − ŷLOO

m,i
)∑n

i=1(ym,i − ȳ)2

2

(6)

PRESS,m =
√

PRESSm

n − k − 1
(7)

here ŷLOO
m,i

is the mth output variable prediction for observation
given by the model that has been trained using all the available
ata, except from observation i.

The statistical indices corresponding to the produced RBF neural
etwork model for both output variables are summarized in Table 2.

Figs. 5 and 6 depict the true FC stack net power and oxygen excess
atio values, against the ones produced by the RBF neural network
odel, using the LOO cross-validation procedure. Good predictive

bilities of both models are illustrated by noticing that in both cases
ll points lie very close to the main diagonal of the graph.

The RBF neural network modeling technique was further val-
dated by developing models based on only 75% of the available
ata and evaluating them on the validation set, i.e. the rest of the
atabase that was not used for the derivation of the model. In order
o show that the success of one particular model is not due to a
hance correlation, 100 random partitions of the data into train-

ng and validation sets (75 and 25% of the data, respectively) were
erformed to generate 100 different RBF models. The RMSE and R2

tatistics were calculated for each model using only the validation
xamples. Table 3 shows the min, max, mean and standard devia-

ig. 5. Database net power values against neural network predictions using the
ross-validation procedure.
RMSE (Pnet) 34.9082 233.4539 94.2287 38.2502
R2 (Pnet) 0.9997 1 0.9999 0.0001
RMSE (�O2 ) 0.0259 0.1949 0.0602 0.0253
R2 (�O2 ) 0.9972 0.9999 0.9995 0.0004

tion of the RMSE and R2 values obtained after performing the 100
runs.

Fig. 7 presents the net power database values and the predic-
tions of the neural network associated with the following statistics
as far as the validation examples are concerned: RMSE = 108.49
and R2 = 0.9999. Accordingly, Fig. 8 plots the oxygen excess ratio
database values and the predictions of the neural network associ-
ated with the following statistics as far as the validation examples

2
are concerned: RMSE = 0.0458 and R = 0.9996. In both cases the dif-
ference between the two lines is almost invisible, thus illustrating
the predictive ability of the produced models.

It must be mentioned here that before applying the RBF method-
ology, several models were developed using the linear regression

Fig. 7. Database net power values against neural network predictions for the vali-
dation data set.
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ig. 8. Database oxygen excess ratio values against neural network predictions for
he validation data set.

pproach. The models were tested using the same validation rou-
ines that were used to test the RBF models. Best-fitting equations
oncerning the FC stack net power and the oxygen excess ratio are
iven below:

net = 159.15Ist − 1198.59
Ucm

Ist
+ 7051.57 (8)

O2 = 0.0053
U2

cm

Ist
+ 1.3187

Ucm

Ist
+ 0.1067 (9)

The aforementioned equations are associated with the statistics
hown in Table 4.

A comparison of the results included in Tables 3 and 4 clearly
ndicates that the RBF modeling methodology outperforms the lin-
ar regression approach, especially when prediction of net power
s concerned. The RBF model will thus be used in the formulation
f the optimization problem, which is described in the next section
f the paper.

. Optimization of the PEMFC performance

Performance of fuel-cell systems can be optimized by selecting
ppropriate stack current and compressor voltage input values [3].
hese are not fixed, but depend on the power that is produced by
he system. In this part of the paper, the meta-model produced in
he previous section is utilized to compute the optimal values of
he input variables for different levels of power demand. The opti-
ization problem is formulated so that it takes into account the
arious constraints and limitations of the system. In Section 4.1 the
ormulation of the optimization problem is presented in detail.

able 4
tatistical indices corresponding to the best models obtained using the linear regres-
ion technique.

Statistical indices related to the best models
obtained using the linear regression technique

Pnet �O2

MSE 2530.6 0.1282
2 0.9505 0.9975
-Statistic 4992.5 103,740
2
CV

0.9496 0.9975
PRESS 2550 0.1299
Fig. 9. Formulation of the Non-Linear Programming Problem.

4.1. Formulation of the optimization problem

The optimization problem is completely defined by the con-
straints that should be satisfied by the solution of the problem and
the performance criterion, which is minimization of the FC stack
current for a given load.

4.1.1. Constraints

i) The FC stack net power has been expressed as a function of Ist,
Ucm using the RBF modeling methodology:

Pnet = g1(Ist, Ucm) (10)

ii) Accordingly, an RBF model has been developed that expresses
oxygen excess ratio as a function of Ist, Ucm:

�O2 = g2(Ist, Ucm) (11)

iii) FC stack net power should match the power demand by the
consumer (set-point):

Pnet = PD (12)

A number of additional constraints are used in the optimiza-
tion problem to express physical limitations of the system and/or
bound the system variables between desired upper and lower lim-
its. In particular, the following upper and lower limits are imposed:
net power (5 kW–45 kW), oxygen excess ratio (>1), stack current
(20 A–350 A), compressor voltage (20 V–250 V).

4.1.2. Objective function
Selection of the objective function is a critical issue in the formu-

lation of the optimization problem. Minimization of stack current
Ist was selected as the performance criterion, because due to Fara-
day’s First Law, stack current is proportional to the consumption of
the costly fuel. Thus, by minimizing stack current, consumption of
hydrogen is also reduced. Consequently, the optimization problem
is formulated as follows:

min
Ist ,Ucm,Pnet ,�O2

Ist (13)

Subject to the constraints (10)–(12) and the upper and lower
bounds posed on the variables of the problem. The optimization
problem is presented graphically in Fig. 9.

The previously described optimization problem is an NLP due
to the non-linear neural network constraints (10) and (11). The
global minimum of the problem was obtained using the GAMS
modeling language [21]. The solution of the optimization problem

contains the optimal values of all decision variables (optimal values
for the manipulated variables stack current and compressor volt-
age, I∗st, U∗

cm, as well as the optimal values for oxygen excess ratio,
�∗

O2
).
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Fig. 10. Optimal �∗
O2

-values as a function of power demand.

.2. Solution of the optimization problem—results

The previously described optimization tool was used to obtain
he optimal values of stack current, compressor voltage and oxygen
xcess ratio, corresponding to several levels of power demand, that
over the range of operation (5 kW–45 kW). The results are pre-
ented graphically in Figs. 10 and 11. In particular, Fig. 10 depicts
he optimal values of the ratio �∗

O2
as a function of power demand,

hereas Fig. 11 illustrates the optimal values of the input variables
∗
st, U∗

cm. These figures will prove useful when designing the process
ontrol strategies in the next section of this paper.

. Control of the PEMFC

The final step in the development of the proposed framework
s to design the optimal control strategy for the FC system. Control
f fuel cells is a challenging problem, due to the multiple and con-
radicting criteria that define the performance of the system. The
rst priority in a fuel-cell control system is to respond both quickly
nd smoothly to power demand changes. This is particularly impor-
ant for applications involving frequent changes of power demand,
uch as in automobile systems. However, changes in power demand

ause sudden changes in the oxygen excess ratio values that are
ften responsible for the oxygen depletion phenomenon, which in
urn can lead to membrane damage and to an abrupt FC system
hut-down.

ig. 11. Optimal values of input variables I∗
st and U∗

cm as functions of power demand.
ources 193 (2009) 258–268

The MPC methodology was chosen to design a control strategy
which improves the dynamic behaviour of the system, while at the
same time the fuel gas consumption is reduced. MPC has advanced
to a popular control methodology for industrial and process appli-
cations mainly due to the inherent ability of the method to handle
efficiently constraints and uncertainties in multivariable dynami-
cal systems. Specifically, the dynamic matrix control (DMC) method
was adopted (Cutler and Ramaker [22]), which requires simple step-
(or pulse-) discrete-time response models, that can easily represent
time delays and complex dynamics. Using the DMC methodology, at
each sampling instance, the sequence of the manipulated variable
values over a future control horizon is computed, by solving online
an optimization problem which minimizes the offset (deviation of
the controlled variables from the desired set-points) over a future
prediction horizon, and the control energy over a future control
horizon. The disturbance during the prediction horizon is assumed
to be constant and equal to the difference between the process
output and the model prediction at the current time instance.

5.1. Design of a DMC methodology

5.1.1. Development of finite impulse response (FIR) models
An FIR or convolution model is a discrete time filter that corre-

lates dynamically an output variable of the system with an input
variable, as follows:

y(t) =
C∑

i=1

hi · u(t − i) (14)

where C is the number of past inputs used in the FIR model. The
coefficients in the above model can be easily determined from the
dynamic response of the output variable, after the introduction of
a step or pulse change on the input variable, when the system is
initially at steady state (Seborg et al. [23]). In case of a MIMO system,
separate FIR models are developed for each pair of input-output
variables. The FIR models can however be aggregated in a matrix
form as follows:

y(k) =

⎡⎢⎢⎣
y1(k)
y2(k)

...
yM(k)

⎤⎥⎥⎦ =
C∑

i=1

Hi · u(t − i)

=
C∑

i=1

⎡⎢⎢⎢⎣
h1,1

i
h1,2

i
. . . h1,N

i

h2,1
i

h2,2
i

. . . h2,N
i

...
...

...
...

hM,1
i

hM,2
i

. . . hM,N
i

⎤⎥⎥⎥⎦
⎡⎢⎢⎣

u1(k − i)
u2(k − i)

...
uN(k − i)

⎤⎥⎥⎦ (15)

where hm,n
i

is the ith coefficient in the FIR model correlating the
mth output variable with the nth input variable.

The fuel-cell system of the present study is a 2 × 2 MIMO sys-
tem. The FIR models were produced by applying step changes on
the manipulated variables (Ist, Ucm) when the system was initially at
steady state, corresponding to Ist =100 A, Ucm =99 V (the respective
steady-state output values are Pnet = 23,255 W, �O2 = 2). The sam-
pling time was set to 0.075 s, so that the FIR model captures the
dynamic characteristics of the system, but at the same time uses a
reasonable number of past input values (C = 30).

5.1.2. The DMC algorithm

In the DMC methodology, at time instance k a set of future

manipulated variables (sequence of manipulated variable values
over the control horizon) is selected, in order to minimize an appro-
priate objective function. The objective function includes both the
deviations of the predicted controlled variables from their set-
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R =
[

0.01 0
0 1/1.3

]
and the responses of the controlled variables

are shown in Figs. 15 and 16.

Table 5
A testing scenario for the control methodologies consisting of several net power
set-point step tests.

Time instance (s) Net power, Pnet (W) �O2

0 8,350 2.496
Fig. 12. DMC basic concept.

oints over the future prediction horizon (ph), and the control effort
ver the control horizon (ch). Then, only the first control move
s implemented and the optimization problem is formulated and
olved again at the next time step k + 1. Fig. 12 presents a schematic
epresentation of the DMC philosophy.

In the sequel, the optimization problem that is solved at each
ime instance is presented in detail. It consists of the objective func-
ion, (Eq. (16)) which describes both the aforementioned control
argets and a number of constraints, (Eqs. (17)–(21)):

Objective function:

min
�u(k),�u(k+1),...,�u(k+ch)(

ph∑
i=1

||W(ŷ(k + i|k) − ysp(k))||22 +
ch∑

i=0

||R�u(k + i)||22

)
(16)

ubject to:

ˆ(k + i|k) =
(

C∑
i=1

Hi · u(k + i − 1)

)
+ d(k), i = 1, . . . , ph (17)

(k) = y(k) − ŷ(k|k) i = 1, . . . , ph (18)

u(k + i) = u(k + i) − u(k + i − 1) i = 1, . . . , ch (19)

min ≤ u(k + i) ≤ umax i = 1, . . . , ch (20)

u(k + i) = 0 i = ch + 1, . . . , ph (21)

In the above formulation of the optimization problem, ŷ(k + i|k)
s the i-step (ahead) prediction of the controlled-variable vector,
sp(k) is a vector containing the current set-point values of the con-
rolled variables, �u(k + i) are the future control moves, R, W are
iagonal square weight matrices, and d(k) is a correction term, cal-
ulated as the current (at time instance k) difference between the
rue output vector and the respective model prediction (Eq. (18)).
t should be noted that although the FIR model is able to predict
he future dynamic behaviour of the fuel-cell system (Eq. (17)), it
s assumed that the future set-point changes and disturbances are
ompletely unknown. The set-point vector is thus set to its cur-

ent value ysp(k) throughout the entire prediction horizon and the
ame happens with the correction term d(k). Eq. (19) computes the
ontrol move at each time instance k + i, as the difference between
he input vector at the same time instance and the input vector in
he previous time instance. Eq. (20) contains hard constraints that
ources 193 (2009) 258–268 265

bound the manipulated variables between upper (umax) and lower
(umin) values due to physical limitations. Eq. (21) ensures that no
control moves are allowed after the end of the control horizon.

5.2. Implementation of the DMC controller on the PEMFC system

The DMC control strategy combined with the operational opti-
mization results presented in the previous section are integrated
in this section, in order to achieve a satisfactory dynamic perfor-
mance, while at the same time fuel consumption is minimized. The
proposed methodology is implemented as follows.

At each time instance the set-point for the two controlled
variables are defined. The set-point for net power demand is deter-
mined by the current energy needs of the user of the fuel-cell
system. The frequency of set-point changes in energy demand
depends on the particular fuel-cell application. It is most prob-
able, that set-point changes will be more frequent for a vehicle
fuel-cell system, compared to a stationary fuel-cell application. As
mentioned in the formulation of the optimization problem in the
previous subsection, the control methodology does not assume any
knowledge about future set-point changes. The set-point for the
second controlled variable (oxygen excess ratio) is then automati-
cally determined by the results presented in Section 4. In particular,
the function corresponding to Fig. 10 is used to obtain the oxygen
excess ratio value that minimizes fuel gas consumption. Then, the
optimization problem defined by Eqs. (16)–(21) is solved to obtain
the optimal sequence of manipulated variables. In the present sim-
ulations, the prediction and control horizons were set to ph = 50
and ch = 40, respectively. From the optimal sequence of manipulated
variables, only the first element is actually applied to the system,
for a time interval equal to the sampling period that was used to
obtain the FIR model coefficients. At the end of this period the entire
procedure is repeated.

The proposed methodology was tested on the scenario pre-
sented in Table 5 which involves a number of step changes on the
power demand set-point. As mentioned in the beginning of the sec-
tion, the two performance criteria (satisfactory dynamic response
of both controlled variables, Pnet, �O2 ) are contradictory. It will be
shown that by tuning appropriately the weight matrices in Eq. (16),
special emphasis can be given on one over the other performance
criterion. In particular:

Case I: The weight matrices are W =
[

0.003 0
0 100

]
,

R =
[

0.01 0
0 1/1.3

]
and the responses of the controlled variables

are shown in Figs. 13 and 14.

Case II: The weight matrices are W =
[

100 0
0 10

]
,

3 12,540 2.452
6 16,730 2.527
9 35,360 2.323

12 18,500 2.488
15 12,350 2.447
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Fig. 13. Response of net power (DMC, Case I).
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Fig. 14. Response of oxygen excess ratio (DMC, Case I).

The efficiency of the method is illustrated by observing that
he control strategy is satisfactory in both cases, because both
ontrolled variables respond quickly and the system reaches the
esired set-points with no-offset. However, the DMC tuning of Case
clearly favours the dynamic response of oxygen excess ratio, which
s driven to the desired set-point after some oscillations of very low
mplitude, whereas 1 s is needed for the net power to reach the
esired set-point. On the contrary, using the tuning strategy of Case
I, sharp peaks are observed as far as the dynamic response of oxy-
en excess ratio is concerned, but at the same time the dynamic
ehaviour of net power is improved (almost instant responses to
et-point changes). However, there is one exception which is the
et power response when the set-point is set to its highest value.

Fig. 15. Response of net power (DMC, Case II).
Fig. 16. Response of oxygen excess ratio (DMC, Case II).

For this particular set-point step change, the net power response is
as slow as in Case I. This is due to the modeling error which becomes
significant when the system operates in a region which is not close
to the operating range that was used for obtaining the FIR models.

5.3. Design of a feedforward control scheme

For comparison purposes, a feedforward controller was also
designed based on the results of Section 4. In particular, the infor-
mation contained in Fig. 11 was used to develop look-up tables,
from which the optimal values of the manipulated variables are
calculated, as functions of the net power demand. The feedforward
controller was applied on the same sequence of net power set-point
changes that was used to test the DMC methodology (Table 5). The
responses of the controlled variables are depicted in Figs. 17 and 18.
It is clear that the feedforward controller is not able to achieve zero
offset. This is due to the fact that, contrary to the DMC methodol-
ogy, the feedforward controller lacks integral action. Additionally,
the dynamic behaviour of �O2 contains sharp and intense changes.
These may cause the abrupt shut-down of the system in a real appli-
cation. They also pose dynamic stress onto the FC membranes due to
pressure oscillations and possible oxygen starvation [19,24], which
reduces lifetime of the membranes.

5.4. Testing the robustness of the control strategies

In this subsection, robustness of the proposed MPC methodol-

ogy is tested on a typical defection case, that happens during the
operation of fuel-cell systems. In particular, it is assumed that 21
of the 381 cell units that constitute the FC stack are out of opera-
tion, due to membrane cracking. The DMC methodology tuned with

Fig. 17. Response of net power (feedforward controller).
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Fig. 18. Response of oxygen excess ratio (feedforward controller).
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Fig. 21. Response of oxygen excess ratio in robustness test (feedforward controller).
Fig. 19. Response of net power in robustness test (feedforward controller).

he Case I strategy and the feedforward controller were tested on
he disturbed system and the responses concerning the controlled
ariables are shown in Figs. 19–22. Robustness of the proposed
ethod is illustrated by noticing that no significant modifications

re observed in the dynamic responses of the controlled vari-
bles, compared to the case where all cell unit operate normally
Figs. 13 and 14), and, the method still produces zero steady-state

ffort. The dynamic behaviour of the feedforward controller is simi-
ar to the one presented in Figs. 17 and 18, but the steady state offset
s further increased.

Fig. 20. Response of net power in robustness test (DMC, Case I).
Fig. 22. Response of oxygen excess ratio in robustness test (DMC, Case I).

6. Conclusions

In this work a computational tool for the optimal control of FC
systems was developed by integrating and combining a number
of modeling, optimization and control technologies. The produced
methodology is built upon four steps that may be summarized as
follows:

• First, via a simulation model, a database is generated which
includes values of the input variables (stack current, Ist, compres-
sor voltage, Ucm) and the corresponding values of output variables
(net output power, Pnet, ratio of incoming oxygen mass flow to the
oxygen that reacts, �O2 );

• Second step is the development of mathematical relationships
between the input and output variables. In particular, the RBF
neural network architecture was utilized for producing the input-
output “meta-models”;

• In the third step, an NLP optimization problem was formulated
that takes into account the constraints and limitations of the sys-
tem. The objective function to be minimized is stack current for a
given value of power demand. Based on the formulation and solu-
tion of the NLP problem, a look-up table is developed, containing
the optimal values of the system variables, for any possible value
of power demand in the operating range of the system;

• Finally, a methodology based on the principles of MPC is designed

for the optimal control of the system response to successive
sep-point changes of power demand. The optimal �O2 -value
(determined by the solution of the optimization problem as
described above) is used as an additional control variable. The
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efficiency of the produced MPC system is illustrated in a number
of simulations, which show that a successful dynamic closed-loop
behaviour can be achieved, while at the same time the consump-
tion of hydrogen is minimized. It is illustrated that by appropriate
tuning, the proposed control strategy can produce zero steady-
state offset, without the risk of oxygen depletion (oxygen excess
ratio does not fall below the value of 1.8 which is, in fact, much
higher than the safety limit of 1.5 [3]).

eferences

[1] R.N. Methekar, V. Prasad, R.D. Gudi, J. Power Sources 165 (2007) 152–170.
[2] C.H. Woo, J.B. Benziger, Chem. Eng. Sci. 62 (2007) 957–968.
[3] J.T. Pukrushpan, A.G. Stefanopoulou, H. Peng, Control of Fuel Cell Power Systems,

Springer, New York, 2004.
[4] L. Guidong, Y. Wensheng, T. Zhishou, Proc. ISDA 2006: Sixth Int. Conf. on Intel-

ligent Systems Design and Applications, vol. 1, 2006, pp. 1104–1110.
[5] P. Rodatz, G. Paganelli, L. Guzzella, Proc. Am. Control Conf., vol. 3, 2003, pp.
2043–2048.
[6] A. Di Domenico, A. Miotti, M. Alhetairshi, Y.G. Guezennec, S.S.V. Rajagopalan, S.

Yurkovich, Proc. Am. Control Conf., 2006, pp. 478–483.
[7] M.A. Danzer, J. Wilhelm, H. Aschemann, E.P. Hofer, J. Power Sources 176 (2008)

515–522.
[8] F. Zenith, S. Skogestad, J. Process Control 17 (2007) 333–347.

[

[

[

ources 193 (2009) 258–268

[9] F.C. Wang, H.T. Chen, Y.P. Yang, J.Y. Yen, J. Power Sources 177 (2008)393–403.
10] M. Zhijun, Z. Xinjian, C. Guangyi, Proc. IEEE Int. Conf. on Ind. Techn., 2005, pp.

220–224.
[11] Z. Yuedong, Z. Jianguo, G. Youguang, J. Jianxun, Proc. of the 26th Chinese Control

Conference, 2007, pp. 345–349.
12] A. Sakhare, A. Davari, A. Feliachi, J. Power Sources 135 (2004) 165–176.
13] J.O. Schumacher, P. Gemmar, M. Denne, M. Zedda, M. Stueber, J. Power Sources

129 (2004) 143–151.
[14] A. Arce, D.R. Ramiı̌rez, A.J. Del Real, C. Bordons, Proc. IEEE Conf. on Decision and

Control, 2008, pp. 6088–6093.
15] J. Golbert, D.A. Lewin, J. Power Sources 135 (2004) 135–151.
16] X. Wang, B. Huang, T. Chen, J. Process Control 17 (2006) 103–114.

[17] A. Vahidi, A. Stefanopoulou, H. Peng, IEEE Trans. Control Syst. Technol. 14 (2006)
1047–1057.

[18] F. Jurado, J. Power Sources 158 (2008) 245–253.
19] A. Vahidi, A. Stefanopoulou, H. Peng, Proc. of the 2004 Amer. Control Conf.,

Boston, MA, 2004, pp. 834–839.
20] H. Sarimveis, A. Alexandridis, G. Tsekouras, G. Bafas, Ind. Eng. Chem. Res. 41

(2002) 751–759.
21] A. Brooke, D. Kendrick, A. Meeraus, R. Raman, GAMS, User Guide. Available with

the GAMS system or from http://www.gams.com, 1998.

22] C.R. Cutler, B.C. Ramaker, Paper WP5-B, AIChE National Meeting, Houston, USA,

1980.
23] D.E. Seborg, T.F. Edgar, D.A. Mellichamp, Process Dynamics and Control, Wiley

& Sons, New York, 2004.
24] T. Bocklisch, Sc. Wo, St. Bo, Proc. 4th European PV-Hybrid and Mini-Grid Con-

ference, Athens, 2008.

http://www.gams.com/

	Operational optimization and real-time control of fuel-cell systems
	Introduction
	PEMFC modeling
	Dynamic first-principle PEMFC model
	Formulation of database

	Development of meta-models
	Correlation equations

	Optimization of the PEMFC performance
	Formulation of the optimization problem
	Constraints
	Objective function

	Solution of the optimization problem-results

	Control of the PEMFC
	Design of a DMC methodology
	Development of finite impulse response (FIR) models
	The DMC algorithm

	Implementation of the DMC controller on the PEMFC system
	Design of a feedforward control scheme
	Testing the robustness of the control strategies

	Conclusions
	References


